置顶

深度解析创新RAG:PIKE-RAG与DeepRAG,RAG技术的创新变革

2025-04-03

置顶

2W8000字读懂GPT全家桶:从GPT-1到O1的技术演进与突破

2025-03-25

强化学习详解第八部分 RLAIF 如何实现人工智能反馈的规模化飞跃

超越人类极限的规模对齐 在我们之前的文章中,我们探讨了人类反馈强化学习(RLHF)是如何通过使用人类评估来教导模型我们的偏好,从而彻底改变了人工智能对齐的方式。 但 RLHF 存在一个令人困扰的局限性,你可能已经猜到了:“人类”。 别误会我的意思 —— 人类反馈是无价的。 但它也很昂贵、缓慢,并且在

强化学习详解第七部分 RLHF:解码 AI 与人类偏好对齐的奥秘

|文末点击阅读原文查看网页版| 更多专栏文章点击查看: LLM 架构专栏

清华大学| 强化学习是否激励LLM中超越基本模型的推理能力?

|文末点击阅读原文查看网页版| 更多专栏文章点击查看: LLM 架构专栏

强化学习详解第六部分 高级策略优化:深度强化学习的演变

高级策略优化:深度强化学习的演变 在我们迄今为止探索强化学习的旅程中,我们见证了深度神经网络如何彻底改变了在复杂环境中可能实现的事情。但就像所有的进化飞跃一样,深度Q网络(DQN)及其直接衍生算法仅仅是更深刻变革的开端。 本文聚焦高级策略优化,深度解析 TRPO、PPO 等经典算法如何解决传统强化学

掌握Torchtune:高效微调、评估和部署大型语言模型的实用指南


掌握Torchtune:高效微调、评估和部署大型语言模型的实用指南 近日热文:全网最全的神经网络数学原理(代码和公式)直观解释 欢迎关注知乎和公众号的专栏内容 LLM架构专栏 知乎LLM专栏

LLM架构系列 ---探索文本嵌入模型:从基础到BERT与SBERT实战

本文1W字,探讨了各种用于生成文本向量表示的嵌入模型,包括词袋模型(BoW)、TF-IDF、Word2Vec、GloVe、FastText、ELMO、BERT等等。深入研究了BERT的架构和预训练,介绍了用于高效生成句子嵌入的句子BERT(SBERT),并提供了一个使用sentence-transf

1W2000字 一文读懂向量数据库:原理、索引技术与选型指南

本文1W2000字,本文简要介绍了向量数据库,重点阐述了其在检索增强生成(RAG)应用中的关键作用。文章突出了ChromaDB、Pinecone和Weaviate等热门数据库,强调了高效存储和检索对优化 RAG 性能的重要性。 文中深入探讨了各种索引技术和算法,对Annoy、倒排文件(IVF)索引、

RAG 

1W8000字 探秘 RAG 应用搜索:从语义搜索到评估指标的深度解析

本文1W8000字,在这篇文章中,我们探讨了检索增强生成(RAG)应用程序中的搜索过程,重点介绍了使用向量数据库的语义搜索。我们强调了其减少处理时间和支持实时更新等优势,同时也指出了面临的挑战,比如对独特查询可能给出不太理想的回复。预防这些问题的策略包括监控查询密度和收集用户反馈。优化工作应贯穿构建

RAG